General method for plasmid construction using homologous recombination.
نویسندگان
چکیده
We describe a general method for plasmid assembly that uses yeast and extends beyond yeast-specific research applications. This technology exploits the homologous recombination, double-stranded break repair pathway in Saccharomyces cerevisiae to join DNA fragments. Synthetic, double-stranded "recombination linkers" were used to "subclone" a DNA fragment into a plasmid with > 80% efficiency. Quantitative data on the influence of DNA concentration and overlap length on the efficiency of recombination are presented. Using a simple procedure, plasmids were shuttled from yeast into E. coli for subsequent screening and large-scale plasmid preps. This simple method for plasmid construction has several advantages. (i) It bypasses the need for extensive PCR amplification and for purification, modification and/or ligation techniques routinely used for plasmid constructions. (ii) The method does not rely on available restriction sites, thus fragment and vector DNA can be joined within any DNA sequence. This enables the use of multifunctional cloning vectors for protein expression in mammalian cells, other yeast species, E. coli and other expression systems as discussed. (iii) Finally, the technology exploits yeast strains, plasmids and microbial techniques that are inexpensive and readily available.
منابع مشابه
Designing E1 Deleted Adenoviral Vector by Homologous Recombination
Adenoviruses are used extensively to deliver genes into mammalian cells, particularly where there is a requirement for high-level expression of transgene products in cultured cells, or for use as recombinant viral vaccines or in gene therapy. In spite of their usefulness, the construction of adenoviral vectors (AdV) is a cumbersome and lengthy process that is not readily amenable to the generat...
متن کاملRecombination-mediated PCR-directed plasmid construction in vivo in yeast.
We have extended the technique of PCR-directed recombination in Saccharomyces cerevisiae to develop a simple method for plasmid or gene construction in the absence of suitable restriction sites. The DNA to be cloned is PCR-amplified with 30-40 bp of homology to a linearized yeast plasmid. Co-transformation into yeast results in homologous recombination at a position directed by the PCR oligonuc...
متن کاملO-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis
Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...
متن کاملThe univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes
BACKGROUND . Modern biological research is highly dependent upon recombinant DNA technology. Conventional cloning methods are time-consuming and lack uniformity. Thus, biological research is in great need of new techniques to rapidly, systematically and uniformly manipulate the large sets of genes currently available from genome projects. RESULTS . We describe a series of new cloning methods ...
متن کاملPlasmid Construction Using Recombination Activity in the Fission Yeast Schizosaccharomyces pombe
BACKGROUND Construction of plasmids is crucial in modern genetic manipulation. As of now, the common method for constructing plasmids is to digest specific DNA sequences with restriction enzymes and to ligate the resulting DNA fragments with DNA ligase. Another potent method to construct plasmids, known as gap-repair cloning (GRC), is commonly used in the budding yeast Saccharomyces cerevisiae....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioTechniques
دوره 26 1 شماره
صفحات -
تاریخ انتشار 1999